Jet Propulsion Laboratory, California Institute of Technology

SEMI-ANALYTIC PRELIMINARY DESIGN OF LOW-THRUST MISSIONS

Javier Roa, Anastassios E. Petropoulos and Ryan S. Park AIAA/AAS Astrodynamics Specialist Conference. August 20-24, 2017

"Implement a fast and intuitive strategy for preliminary low-thrust gravity-assist mission design"

ANALYTIC SOLUTION WITH CONTINUOUS THRUST

Generalized logarithmic spirals. Integrals of motion.

BROAD SEARCH

Branch and prune algorithm.

LOCAL OPTIMIZATION OF CANDIDATE SOLUTIONS

Using MALTO.

CONTENTS

- 1) Generalized logarithmic spirals.
- 2) Individual legs.
- 3) The algorithm.
- 4) Branch and Prune.
- 5) Selection.
- 6) Examples:
 - Asteroid deflection.
 - Interplanetary mission.

GENERALIZED LOG. SPIRALS

THRUST PROFILE

$$\mathbf{a}_p = -\frac{\mu}{r^2} [\cos \psi \, \mathbf{t} + (1 - 2\xi) \sin \psi \, \mathbf{n}]$$

Parabolic

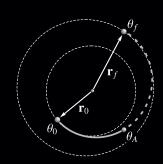
Hyperbolic

CONSERVATION LAWS

$$v^2 - \frac{2\mu}{r}(1-\xi) = K_1$$

and

$$rv^2\sin\psi=K_2$$



INDIVIDUAL LEGS

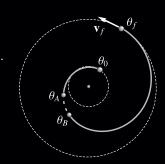
TARGETING PROBLEM

$$r(\theta_f; \xi, \theta_A) - r_f = 0$$

$$t(\theta_f; \xi, \theta_A) - t_f = 0$$

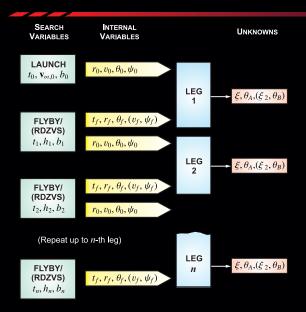
- "Flyby mode".
- Lambert-like problem, 2 eqs. for 2 unknowns.
- ▶ Thrust + Coast / Coast + Thrust.
- Multirev solutions.

INDIVIDUAL LEGS II


RENDEZVOUS PROBLEM

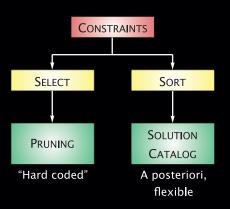
$$r(\theta_f; \xi_1, \theta_A, \theta_B) - r_f = 0$$

$$t(\theta_f; \xi_1, \theta_A, \theta_B) - t_f = 0$$


$$\psi(\theta_f; \xi_1, \theta_A, \theta_B) - \psi_f = 0$$

- ▶ Two additional constraints: (v_f, ψ_f) .
- ▶ Thrust + Coast + Thrust.
- Condition on v_f can be solved analytically \rightarrow 3 eqs.


THE ALGORITHM


BRANCH AND PRUNE

Controls the dimension of the problem

SELECTION

- Selection criteria during the search phase drive optimization step.
 - Collection of solutions → post-process.
- Rank solutions for optimization stage.

EXAMPLES

ASTEROID DEFLECTION

PDC2017 scenario

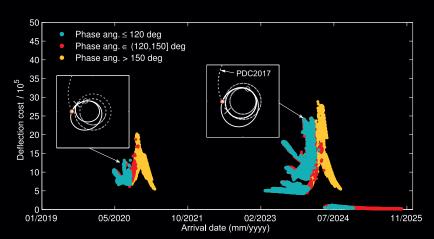
INTERPLANETARY MISSION

Rendezvous with Jupiter

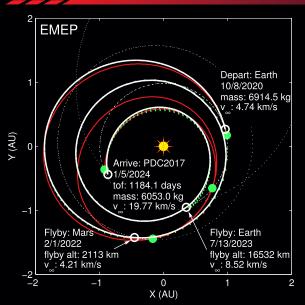
ASTEROID DEFLECTION

PDC2017

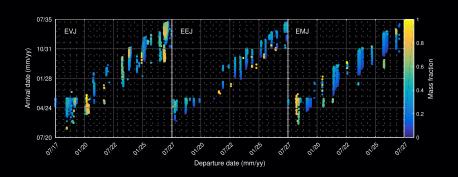
- Fictitious asteroid, impact July 2027.
- Discovered March 2017.
- Four periapsis passes: May-2017, Sep-2020, Feb-2024, Jun-2027.
- \sim 1.5 yrs for earliest launch.
- Arrival phase angle $< 120^{\circ}$.



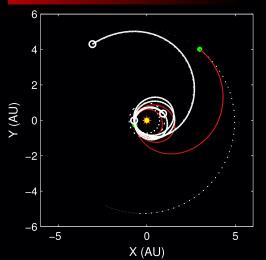
ASTEROID DEFLECTION II


EARTH-VENUS-PDC2017

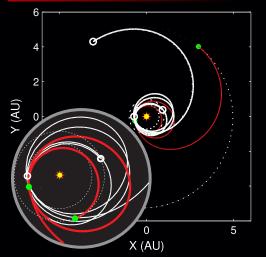
$$J=eta(\mathbf{v}_{\infty}\cdot\mathbf{v}_{\mathsf{ast}})rac{m_{\mathsf{sc}}}{m_{\mathsf{ast}}}$$


ASTEROID DEFLECTION II

MISSIONS TO JUPITER


SINGLE-FLYBY OPTIONS

MISSIONS TO JUPITER II


RESONANT FLYBY (VENUS)

MISSIONS TO JUPITER II

RESONANT FLYBY (VENUS)

ONCLUSIONS

THE METHOD

- Conservation laws simplify the targeting problem.
- Computational burden: 2 or 3 equations per leg.
- Lambert-like methodology.
- Flexible: constraints + post-processing.

RESULTS

- Generalized logarithmic spirals yield realistic seeds.
- The local optimizer converges from the initial guesses.

First integrals simplify the design process